Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Sustainability ; 14(17):10909, 2022.
Article in English | ProQuest Central | ID: covidwho-2024209

ABSTRACT

Disruption in many supply chains has shown the vulnerability of global supply networks, especially resource-intensive ones, due to the simultaneous effects of pandemics and geopolitical crises. Reshoring and nearshoring strategies are the possible responses of manufacturing companies to disruptions in order to adapt to unforeseen events. The supply chain for the Italian ceramic sector, which is characterized by a high intensity of natural and energy resource consumption and a sourcing system with a high geopolitical risk, is examined in this study. The functional decomposition technique was used to analyze the supply chain;then, three scenarios were developed as potential remedies for the unexpected termination of Ukrainian plastic clay supply. The study also showed that complex issues require multifaceted analysis approaches, which is why a transdisciplinary approach was chosen. In addition, the analysis of the ceramic industry showed that nearshoring and reshoring strategies can reduce supply risk and have a positive impact on the environment. The study also showed how bringing extraction sources closer to factories significantly reduces CO2 emissions to the atmosphere from transportation. The main contribution of this paper is the analysis of the complexity of supply chains in times of disruption, configuring reshoring and nearshoring options through transdisciplinarity.

2.
Sustainability ; 14(13):8013, 2022.
Article in English | ProQuest Central | ID: covidwho-1934250

ABSTRACT

This paper demonstrates the need and potential for using waste heat recovery (WHR) systems from infrared gas radiant heaters, which are typical heat sources in large halls, due to the increasing energy-saving requirements for buildings in the EU and the powerful and wide-spread development of the e-commerce market. The types of gas radiant heaters are discussed and the classification of WHR systems from these devices is performed. The article also presents for the first time our innovative solution, not yet available on the market, for the recovery of heat from the exhaust gases of ceramic infrared heaters. The energy analysis for an industrial hall shows that this solution allows for environmental benefits at different levels, depending on the gas infrared heater efficiency, by reducing the amount of fuel and emissions for domestic hot water (DHW) preparation (36.8%, 15.4% and 5.4%, respectively, in the case of low-, standard- and high-efficiency infrared heaters). These reductions, considering both DHW preparation and hall heating, are 16.1%, 7.6% and 3.0%, respectively. The key conclusion is that the innovative solution can spectacularly improve the environmental effect and achieve the highest level of fuel savings in existing buildings that are heated with radiant heaters with the lowest radiant efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL